Orange canvas is a good, high-performance data mining app.
https://orange.biolab.si/
installing it using pip:
python -m pip install PyQt5 PyQtWebEngine orange3
( need latest python 3, like 3.7+ )
( April 2020, python3.8 easy fix: https://github.com/conda-forge/pyqtgraph-feedstock/issues/10 if there is an error with pyqtgraph\ptime.py , need to replace in this file .clock() by .perf_counter()
)
running it:
python -m Orange.canvas
Orange is very easy to use and reasonably responsive.
But it is a bit limited with data preprocessing,
but Here I present a workaround:
from Orange.data.pandas_compat import table_from_frame,table_to_frame df= table_to_frame(in_data) #here you go out_data = table_from_frame(df)
Now I can take a function of temporizing data series, like the following and convert it to Orange with ease
def create_dataset(dataset, look_back=1):
dataX, dataY = [], []
for i in range(len(dataset)-look_back-1):
a = dataset[i:(i+look_back), 0]
dataX.append(a)
dataY.append(dataset[i + look_back, 0])
return numpy.array(dataX), numpy.array(dataY)
The result is, like this:
from Orange.data.pandas_compat import table_from_frame,table_to_frame import numpy as np import pandas as pd df= table_to_frame(in_data) dataset=df["pfd"].values look_back=20 samples=[] for i in range(len(dataset)-look_back): samples.append(dataset[i:(i+look_back)]) numpy_samples=np.array(samples) samples_titles=[ "p"+str(i+1) for i in range(look_back)] df = pd.DataFrame(data=numpy_samples, columns=samples_titles) out_data = table_from_frame(df)
Recent Comments